\qquad

St Swithun's

Mathematics

Sixth Form Academic Assessment

Past Paper

Time allowed: $\mathbf{1}$ hour 30 minutes

Instructions to Candidates

All candidates should start at Question 1 and work through the paper until they finish or run out of time. Each question is worth 5 marks but the questions increase in difficulty as the question number increases.

Please note that the diagrams given in these questions are not to scale.

You may use a calculator.
Write your answers on file paper, not on the question paper.
Show all your working for each question.

Mathematics Sixth Form Entrance Examination
 Year of entry: 2011

Formulae

Sine Rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine Rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Mathematics Sixth Form Entrance Examination
 Year of entry: 2011

1. Simplify:
a) $\quad x(x-5)+6(x-3)$
b) $\frac{5 x+1}{5}-\frac{3 x+2}{3}$
2. Solve the following equations:
a) $x^{2}+x-56=0$
b) $\quad 5(x-3)+8=7(x+4)$
c) $\quad x^{2}(x-1)=x(x+2)(x-3)+4$
3. Solve the simultaneous equations:

$$
\begin{aligned}
x-4 y & =22 \\
3 x+2 y & =-4
\end{aligned}
$$

4. The diagram shows two right-angled triangles. $A D=15 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$.

a) Given that $\tan x=2.4$, calculate the length $A C$.
b) Calculate the value of $\tan y$.
5. Expand and simplify $(\sqrt{5} x+2 \sqrt{3})^{2}$

Mathematics Sixth Form Entrance Examination Year of entry: 2011

6. The shape shown below consists of a semicircle and a square.

If the area of the whole shape is $100 \mathrm{~cm}^{2}$, calculate the radius of the semicircle.

7. A, B and C are points on the circumference of a circle with centre O.
$S C T$ is a tangent to the circle. Angle $B C T=70^{\circ}$, angle $S C A=42^{\circ}$.

Calculate the size of angle OBA, showing your argument clearly and justifying each step.
8. Without using a calculator (so make sure you show enough working to make each step clear) find the exact value of

$$
\frac{3 \frac{1}{2} \times 1 \frac{3}{14}}{6 \frac{4}{5}}
$$

9. Make w the subject of the formula $8 r t-4 w=3 w(r-3)$.
10. Find the equation of the line through the points $(-6,-1)$ and $(3,2)$.
11. Solve the equation $\frac{6}{x-1}-\frac{4}{x+3}=1$.

Mathematics Sixth Form Entrance Examination Year of entry: 2011

12. When $10^{20}-90$ is written in full, what is the sum of the digits?
13. $x \bullet y$ is defined to be $x y-10 x-10 y+110$.

Find a number, e, with the property that $e \bullet y=y$ for any number y.
14. The product of four different positive integers is 100 . What is the sum of these integers?
15. Consider the result of inserting three multiplication symbols between the digits $2,3,5,6$ and 7 , in that order. For example, $2 \times 3 \times 5 \times 67=2010$ What is the largest number that can be made in this way?
Explain how you found your answer.
16. Two vertical poles are 3 metres and 2 metres tall. The top of each pole is attached to the bottom of the other by a taut rope. What is the height of the point where the ropes cross?
17. Consider the nine-digit numbers formed by using each of the digits 1 to 9 once and only once eg 123456789 and 312645987 . How many of these numbers are prime? Be careful to justify your answer fully.
18. Explain why $x^{3}-x$ is always a multiple of 6 if $x>1$.
19. The diagram below shows a square and a circle.

If the square has sides of length 2 , what is the radius of the circle?

Mathematics Sixth Form Entrance Examination Year of entry: 2011

20. The edges of the cube shown below are 8 cm long.

Also $A B=B C=2 \mathrm{~cm}$ and $D E=E F=6 \mathrm{~cm}$.
Find the area of the trapezium $A C F D$.

END OF QUESTIONS

